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Software Testing

• The objective of software testing is to cause failures to find 
faults/errors in the system 

• A Failure is an incorrect output for a given input
• Failures are caused by faults/errors in your program
• A fault/error is an incorrect piece of code/document (bug)

– Missing condition
– Incorrect stopping condition
– Wrong equation
– etc.
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Finding Faults

• Test cases are developed to exercise your program with the 
goal of uncovering the faults
– Given a failure, debugging is done to identify the fault/error(s) in the 

code

• The best test case is one that has a high probability to cause a 
failure

• Start by testing each method (unit tests)

• Then each class in full (module tests)

• Then the whole program (system tests)
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Information Needed to do Testing

• A method/function is defined by an input/output specification

–  Termed the I/O spec

– The pre and post conditions of a function describe the I/O spec

• A method/function is also defined by its implementation 
details

– For-loop vs while loop vs recursive
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Assertions, Pre/Post Conditions, Invariants

• Assertion (ASSERT): A statement that is true at a specific point in 
the program

• Pre-condition (REQUIRES): A statement that must be true before a 
method/function is called/executed

• Post-condition (ENSURES): A statement that is true after a 
method/function is executed

• Invariants – statement that are always true
– LOOP INV: Statement that is always true within the scope of a loop
– CLASS INV: Statement that is always true for object of a give type/class
– GLOBAL INV: Statement that is always true globally
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Example
//REQUIRES:  assigned(key && tbl[0,..size-1]) && (size >= 0)

//ENSURES:  (RETVAL == i where tbl[i] == key) ||

//      (RETVAL == -1 where i == size)

int search(const int tbl[], int key, int size) {

  //ASSERT (size >= 0) && (sizeof(tbl) == size)

  int i = 0;

  //ASSERT (size >= 0) && (sizeof(tbl) == size) && i == 0

  while (i < size){ //LOOP INV: (key != tbl[0,..,i-1]) && (i <= size)

    if (tbl[i] == key) {

      //ASSERT (tbl[i] == key) && (i < size)

      return i;

    }

    //ASSERT (key != tbl[0,..,i]) && (i < size)

    ++i;

    //ASSERT (key != tbl[0,..,i-1]) && (i <= size)

  }

  //ASSERT key != tbl[0,..,size-1]

  return -1;

}
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Black-box vs Glass-box Testing

• Black-box testing uses only the I/O spec to develop test cases
– Ignore the implementation and test to specification

– Also called specification testing

• Glass (white) box uses only the implementation details to 
develop test cases
– Ignore the specification and test the code

– Test every path, make sure every line is executed

• Both types of information are necessary to develop a good set 
of test cases for a method/function
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Number of Possible Test Cases?

• Most functions have a very large (i.e., infinite) number of 
possible inputs and outputs

• Do you need to test all of these to be satisfied your function 
behaves correctly?  Thankfully, no!

• Again, the best test case is one that has a high probability in 
uncovering a fault
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Pairing Down Test Cases

• Take advantage of symmetries, equivalencies, and 
interdependencies in the data to reduce the number of test 
cases.
– Equivalence Testing

– Boundary Value Analysis

• Determine the ranges of input & output

• Develop equivalence classes of input/output

• Examine the boundaries of these classes carefully
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Equivalence Partitioning

• Input data and output results often fall into sets of related data 
called equivalence partitions (a topic in Discrete Structures)

– Given the range -20, ... 20

– One partition: {-20, ... , -1}, {0}, {1, ... 20}

• Test cases should be chosen from each of the different 
partition

– -10, 0, 10
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Boundary Value Analysis

• Given the equivalence partitions:

– {-20, ... , -1}, {0}, {1, ... 20}

• Choose test cases at the boundaries of these sets:

– -20, -1, 0, 1, 20
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Example

//REQUIRES: (n>=0) && tbl[0,.., n-1]
//ENSURES:  RETVAL == i where key == tbl[i]
//    or RETVAL == -1 if key != tbl[0,.., n-1]
int search(int key, int tbl[], int n) {
  int i = 0;
  while (i < n) {
    if (key == tbl[i]) return i;
    ++i;
  }
  return -1;
}
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Testing to the Specification 

• Problem: Search an array tbl of size n for a key, Return the 
location of first occurrence (or -1)

• Equivalence Partitions:

– n: {0, …, maxint}

– key: {-maxint, ..., maxint}

– tbl: contains key, does not contain key, contains multiple keys

– tbl: key at 0 ... n-1
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Black-box Test Cases

• One from each equivalence class and the boundaries

• n: 0, 1, 25, 500

• key: -10, 0, 10

• tbl: key at 0, 1, n/2, n-2, n-1

• tbl: key not in the array

• tbl: Multiple keys in the array
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Testing to the Code

• Make sure each line is executed

int search(int key, int tbl[], int n) {
  int i = 0;
  while (i < n) {
    if (key == tbl[i]) 

            return i;
    ++i;
  }
  return -1;

}
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Testing to the Code

• Make sure each line is executed

int search(int key, int tbl[], int n) {
  int i = 0;                     //Any n
  while (i < n) {                //Any n
    if (key == tbl[i])         //n>0

            return i;              //n>0, key in tbl
    ++i;                       //n>0, key != tbl[0]
  }
  return -1;                     //Any n, key not in tbl

}
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Glass-box Test Cases

• Some n>0 and key in/not in

• n = 10, key in tbl

• n = 10, key not in tbl
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Test-Driven Development (TDD)

• Testing is an integral and critical part of development
• Without testing, you do not have a functioning application (bugs)

• To write a method/function:
1. Determine the I/O spec
2. Develop test cases
3. Implement the method
4. Run the method against the test cases
5. Fix any faults (debugging)
6. Go to 4 until all tests pass
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Unit Testing

• Build a program for unit testing
– A main with all the tests

– Called a test driver

• One test driver for each method

• Test simplest methods first, more complex later

• First test constructors, I/O, simple accessors

• Then more complex operations

• Build confidence that simple operators are correct so you can 
localize errors when testing more complex operations in the class
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Regression Testing

• Each time you add a new method to your class or fix a fault, 
run ALL your test cases

• Adding something new or fixing a problem may have side 
effects that cause another fault

• Re-running your test cases will help to uncover these problems 
(if they happen)
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Example Test Driver

#include <cassert>
int main() {
  Set a;
  assert(a.card() == 0);

  Set b(1, 4);
  assert(b.card() == 2);
  assert(b == set(1, 4));
  assert(b != a);

  std::cout << “{1, 4} == “ << b << std:: endl;  
  std::cout << “All Tests Completed“ << std:: endl;
  return 0;

}
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TDD Mantra (Agile Development Process)

• Develop test cases before you code

• Test each time you add code

• Run all test cases
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