Software Testing
CS II: Data Structures & Abstraction

Jonathan I. Maletic
Kent State University
Spring 2013

Software Testing

The objective of software testing is to cause failures to find
faults/errors in the system

A Failure is an incorrect output for a given input
Failures are caused by faults/errors in your program

A fault/error is an incorrect piece of code/document (bug)
— Missing condition

— Incorrect stopping condition

— Wrong equation

— etc.

Finding Faults

Test cases are developed to exercise your program with the
goal of uncovering the faults

— Given a failure, debugging is done to identify the fault/error(s) in the
code

The best test case is one that has a high probability to cause a
failure

Start by testing each method (unit tests)
Then each class in full (module tests)
Then the whole program (system tests)

Information Needed to do Testing

* A method/function is defined by an input/output specification
— Termed the 1/0 spec
— The pre and post conditions of a function describe the /0 spec

* A method/function is also defined by its implementation
details

— For-loop vs while loop vs recursive

Assertions, Pre/Post Conditions, Invariants

Assertion (ASSERT): A statement that is true at a specific point in
the program

Pre-condition (REQUIRES): A statement that must be true before a
method/function is called/executed

Post-condition (ENSURES): A statement that is true after a
method/function is executed
Invariants — statement that are always true

— LOOP INV: Statement that is always true within the scope of a loop
— CLASS INV: Statement that is always true for object of a give type/class
— GLOBAL INV: Statement that is always true globally

Example

//REQUIRES: assigned(key && tbl[9,..size-1]) && (size >= 0)
//ENSURES: (RETVAL == i where tbl[i] == key) ||
// (RETVAL == -1 where i == size)
int search(const int tbl[], int key, int size) {
//ASSERT (size >= 0) && (sizeof(tbl) == size)
int 1 = 0;
//ASSERT (size >= 0) && (sizeof(tbl) == size) && i ==
while (i < size){ //LOOP INV: (key != tbl[@O,..,i-1]) && (i <= size)
if (tbl[i] == key) {
//ASSERT (tbl[i] == key) && (i < size)

return 1i;

}

//ASSERT (key != tbl[0,..,i]) && (i < size)

++1;

//ASSERT (key != tbl[0,..,i-1]) && (i <= size)
}
//ASSERT key != tbl[@,..,size-1]
return -1;

}

Copyright 2023 J.I. Maletic Computer Science Il Kent State University

Black-box vs Glass-box Testing

* Black-box testing uses only the I/O spec to develop test cases
— Ignore the implementation and test to specification
— Also called specification testing

e Glass (white) box uses only the implementation details to
develop test cases
— Ignore the specification and test the code
— Test every path, make sure every line is executed

* Both types of information are necessary to develop a good set
of test cases for a method/function

Number of Possible Test Cases?

 Most functions have a very large (i.e., infinite) number of
possible inputs and outputs

* Do you need to test all of these to be satisfied your function
behaves correctly? Thankfully, no!

* Again, the best test case is one that has a high probability in
uncovering a fault

Pairing Down Test Cases

Take advantage of symmetries, equivalencies, and

interdependencies in the data to reduce the number of test
cases.

— Equivalence Testing
— Boundary Value Analysis

Determine the ranges of input & output
Develop equivalence classes of input/output
Examine the boundaries of these classes carefully

Equivalence Partitioning

* |[nput data and output results often fall into sets of related data
called equivalence partitions (a topic in Discrete Structures)

— Given the range -20, ... 20
— One partition: {-20, ..., -1}, {0}, {1, ... 20}

e Test cases should be chosen from each of the different
partition
—-10, 0, 10

Boundary Value Analysis

* Given the equivalence partitions:
—{-20, ..., -1}, {0}, {1, ... 20}

e Choose test cases at the boundaries of these sets:
—-20,-1,0, 1, 20

Example

//REQUIRES: (n>=0) &% tbl[0,.., n-1]
//ENSURES: RETVAL == i1 where key == tbl[i]

//

or RETVAL == -1 if key != tbl[0,.., n-1]

int search(int key, int tbl[], int n) {

int 1 = 9;

while (i1 < n) {
if (key == tbl[i]) return i;
++1;

¥

return -1;

Copyright 2023 J.I. Maletic Computer Science Il Kent State University

12

Testing to the Specification

* Problem: Search an array tbl of size n for a key, Return the
location of first occurrence (or -1)

e Equivalence Partitions:
—n: {0, ..., maxint}
— key: {-maxint, ..., maxint}
— tbl: contains key, does not contain key, contains multiple keys
— tbl: keyat0...n-1

One from each equivalence class and the boundaries

Black-box Test Cases

n: 0, 1, 25, 500
key: -10, 0, 10

t
t
t

0
0

0

: key at 0, 1, n/2, n-2, n-1
. key not in the array
: Multiple keys in the array

Testing to the Code

e Make sure each line is executed

int search(int key, int tbl[], int n) {
int 1 = 0;
while (i < n) {
if (key == tbl[i])
return 1i;
++1;
}

return -1;

Testing to the Code

e Make sure each line is executed

int search(int key, int tbl[], int n) {

int 1 = 0; //Any n
while (i < n) { //Any n
if (key == tbl[i]) //n>0
return 1; //n>0, key in tbl
++1; //n>0, key != tbl[0]
}
return -1; //Any n, key not in tbl

Glass-box Test Cases

 Some n>0 and key in/not in

* n=10, key in tbl
* n=10, key not in tbl

Test-Driven Development (TDD) e = @

* Testing is an integral and critical part of development
* Without testing, you do not have a functioning application (bugs)

* To write a method/function:
1. Determine the /O spec
Develop test cases
Implement the method
Run the method against the test cases
Fix any faults (debugging)
Go to 4 until all tests pass

o Uk W

Unit Testing

Build a program for unit testing
— A main with all the tests
— Called a test driver

One test driver for each method

Test simplest methods first, more complex later
First test constructors, 1/0, simple accessors
Then more complex operations

Build confidence that simple operators are correct so you can
localize errors when testing more complex operations in the class

Regression Testing

* Each time you add a new method to your class or fix a fault,
run ALL your test cases

* Adding something new or fixing a problem may have side
effects that cause another fault

* Re-running your test cases will help to uncover these problems
(if they happen)

Example Test Driver

#include <cassert>
int main() {
Set a;
assert(a.card() == 0);

Set b(1, 4);
assert(b.card() == 2);
assert(b == set(1, 4));
assert(b != a);

std::cout << “{1, 4} == “ << b << std:: endl;
std::cout << “All Tests Completed®™ << std:: endl;
return 0;

TDD Mantra (Agile Development Process)

* Develop test cases before you code
e Test each time you add code

e Run all test cases

	Slide 1: Software Testing CS II: Data Structures & Abstraction
	Slide 2: Software Testing
	Slide 3: Finding Faults
	Slide 4: Information Needed to do Testing
	Slide 5: Assertions, Pre/Post Conditions, Invariants
	Slide 6: Example
	Slide 7: Black-box vs Glass-box Testing
	Slide 8: Number of Possible Test Cases?
	Slide 9: Pairing Down Test Cases
	Slide 10: Equivalence Partitioning
	Slide 11: Boundary Value Analysis
	Slide 12: Example
	Slide 13: Testing to the Specification
	Slide 14: Black-box Test Cases
	Slide 15: Testing to the Code
	Slide 16: Testing to the Code
	Slide 17: Glass-box Test Cases
	Slide 18: Test-Driven Development (TDD)
	Slide 19: Unit Testing
	Slide 20: Regression Testing
	Slide 21: Example Test Driver
	Slide 22: TDD Mantra (Agile Development Process)

