
Software Testing
CS II: Data Structures & Abstraction

Jonathan I. Maletic

Kent State University

Spring 2013

Software Testing

• The objective of software testing is to cause failures to find
faults/errors in the system

• A Failure is an incorrect output for a given input
• Failures are caused by faults/errors in your program
• A fault/error is an incorrect piece of code/document (bug)

– Missing condition
– Incorrect stopping condition
– Wrong equation
– etc.

Copyright 2023 J.I. Maletic Computer Science II Kent State University 2

Finding Faults

• Test cases are developed to exercise your program with the
goal of uncovering the faults
– Given a failure, debugging is done to identify the fault/error(s) in the

code

• The best test case is one that has a high probability to cause a
failure

• Start by testing each method (unit tests)

• Then each class in full (module tests)

• Then the whole program (system tests)

Copyright 2023 J.I. Maletic Computer Science II Kent State University 3

Information Needed to do Testing

• A method/function is defined by an input/output specification

– Termed the I/O spec

– The pre and post conditions of a function describe the I/O spec

• A method/function is also defined by its implementation
details

– For-loop vs while loop vs recursive

Copyright 2023 J.I. Maletic Computer Science II Kent State University 4

Assertions, Pre/Post Conditions, Invariants

• Assertion (ASSERT): A statement that is true at a specific point in
the program

• Pre-condition (REQUIRES): A statement that must be true before a
method/function is called/executed

• Post-condition (ENSURES): A statement that is true after a
method/function is executed

• Invariants – statement that are always true
– LOOP INV: Statement that is always true within the scope of a loop
– CLASS INV: Statement that is always true for object of a give type/class
– GLOBAL INV: Statement that is always true globally

Copyright 2023 J.I. Maletic Computer Science II Kent State University 5

Example
//REQUIRES: assigned(key && tbl[0,..size-1]) && (size >= 0)

//ENSURES: (RETVAL == i where tbl[i] == key) ||

// (RETVAL == -1 where i == size)

int search(const int tbl[], int key, int size) {

 //ASSERT (size >= 0) && (sizeof(tbl) == size)

 int i = 0;

 //ASSERT (size >= 0) && (sizeof(tbl) == size) && i == 0

 while (i < size){ //LOOP INV: (key != tbl[0,..,i-1]) && (i <= size)

 if (tbl[i] == key) {

 //ASSERT (tbl[i] == key) && (i < size)

 return i;

 }

 //ASSERT (key != tbl[0,..,i]) && (i < size)

 ++i;

 //ASSERT (key != tbl[0,..,i-1]) && (i <= size)

 }

 //ASSERT key != tbl[0,..,size-1]

 return -1;

}
Copyright 2023 J.I. Maletic Computer Science II Kent State University 6

Black-box vs Glass-box Testing

• Black-box testing uses only the I/O spec to develop test cases
– Ignore the implementation and test to specification

– Also called specification testing

• Glass (white) box uses only the implementation details to
develop test cases
– Ignore the specification and test the code

– Test every path, make sure every line is executed

• Both types of information are necessary to develop a good set
of test cases for a method/function

Copyright 2023 J.I. Maletic Computer Science II Kent State University 7

Number of Possible Test Cases?

• Most functions have a very large (i.e., infinite) number of
possible inputs and outputs

• Do you need to test all of these to be satisfied your function
behaves correctly? Thankfully, no!

• Again, the best test case is one that has a high probability in
uncovering a fault

Copyright 2023 J.I. Maletic Computer Science II Kent State University 8

Pairing Down Test Cases

• Take advantage of symmetries, equivalencies, and
interdependencies in the data to reduce the number of test
cases.
– Equivalence Testing

– Boundary Value Analysis

• Determine the ranges of input & output

• Develop equivalence classes of input/output

• Examine the boundaries of these classes carefully

Copyright 2023 J.I. Maletic Computer Science II Kent State University 9

Equivalence Partitioning

• Input data and output results often fall into sets of related data
called equivalence partitions (a topic in Discrete Structures)

– Given the range -20, ... 20

– One partition: {-20, ... , -1}, {0}, {1, ... 20}

• Test cases should be chosen from each of the different
partition

– -10, 0, 10

Copyright 2023 J.I. Maletic Computer Science II Kent State University 10

Boundary Value Analysis

• Given the equivalence partitions:

– {-20, ... , -1}, {0}, {1, ... 20}

• Choose test cases at the boundaries of these sets:

– -20, -1, 0, 1, 20

Copyright 2023 J.I. Maletic Computer Science II Kent State University 11

Example

//REQUIRES: (n>=0) && tbl[0,.., n-1]
//ENSURES: RETVAL == i where key == tbl[i]
// or RETVAL == -1 if key != tbl[0,.., n-1]
int search(int key, int tbl[], int n) {
 int i = 0;
 while (i < n) {
 if (key == tbl[i]) return i;
 ++i;
 }
 return -1;
}

Copyright 2023 J.I. Maletic Computer Science II Kent State University 12

Testing to the Specification

• Problem: Search an array tbl of size n for a key, Return the
location of first occurrence (or -1)

• Equivalence Partitions:

– n: {0, …, maxint}

– key: {-maxint, ..., maxint}

– tbl: contains key, does not contain key, contains multiple keys

– tbl: key at 0 ... n-1

Copyright 2023 J.I. Maletic Computer Science II Kent State University 13

Black-box Test Cases

• One from each equivalence class and the boundaries

• n: 0, 1, 25, 500

• key: -10, 0, 10

• tbl: key at 0, 1, n/2, n-2, n-1

• tbl: key not in the array

• tbl: Multiple keys in the array

Copyright 2023 J.I. Maletic Computer Science II Kent State University 14

Testing to the Code

• Make sure each line is executed

int search(int key, int tbl[], int n) {
 int i = 0;
 while (i < n) {
 if (key == tbl[i])

 return i;
 ++i;
 }
 return -1;

}

Copyright 2023 J.I. Maletic Computer Science II Kent State University 15

Testing to the Code

• Make sure each line is executed

int search(int key, int tbl[], int n) {
 int i = 0; //Any n
 while (i < n) { //Any n
 if (key == tbl[i]) //n>0

 return i; //n>0, key in tbl
 ++i; //n>0, key != tbl[0]
 }
 return -1; //Any n, key not in tbl

}

Copyright 2023 J.I. Maletic Computer Science II Kent State University 16

Glass-box Test Cases

• Some n>0 and key in/not in

• n = 10, key in tbl

• n = 10, key not in tbl

Copyright 2023 J.I. Maletic Computer Science II Kent State University 17

Test-Driven Development (TDD)

• Testing is an integral and critical part of development
• Without testing, you do not have a functioning application (bugs)

• To write a method/function:
1. Determine the I/O spec
2. Develop test cases
3. Implement the method
4. Run the method against the test cases
5. Fix any faults (debugging)
6. Go to 4 until all tests pass

Copyright 2023 J.I. Maletic Computer Science II Kent State University 18

Unit Testing

• Build a program for unit testing
– A main with all the tests

– Called a test driver

• One test driver for each method

• Test simplest methods first, more complex later

• First test constructors, I/O, simple accessors

• Then more complex operations

• Build confidence that simple operators are correct so you can
localize errors when testing more complex operations in the class

Copyright 2023 J.I. Maletic Computer Science II Kent State University 19

Regression Testing

• Each time you add a new method to your class or fix a fault,
run ALL your test cases

• Adding something new or fixing a problem may have side
effects that cause another fault

• Re-running your test cases will help to uncover these problems
(if they happen)

Copyright 2023 J.I. Maletic Computer Science II Kent State University 20

Example Test Driver

#include <cassert>
int main() {
 Set a;
 assert(a.card() == 0);

 Set b(1, 4);
 assert(b.card() == 2);
 assert(b == set(1, 4));
 assert(b != a);

 std::cout << “{1, 4} == “ << b << std:: endl;
 std::cout << “All Tests Completed“ << std:: endl;
 return 0;

}

Copyright 2023 J.I. Maletic Computer Science II Kent State University 21

TDD Mantra (Agile Development Process)

• Develop test cases before you code

• Test each time you add code

• Run all test cases

Copyright 2023 J.I. Maletic Computer Science II Kent State University 22

	Slide 1: Software Testing CS II: Data Structures & Abstraction
	Slide 2: Software Testing
	Slide 3: Finding Faults
	Slide 4: Information Needed to do Testing
	Slide 5: Assertions, Pre/Post Conditions, Invariants
	Slide 6: Example
	Slide 7: Black-box vs Glass-box Testing
	Slide 8: Number of Possible Test Cases?
	Slide 9: Pairing Down Test Cases
	Slide 10: Equivalence Partitioning
	Slide 11: Boundary Value Analysis
	Slide 12: Example
	Slide 13: Testing to the Specification
	Slide 14: Black-box Test Cases
	Slide 15: Testing to the Code
	Slide 16: Testing to the Code
	Slide 17: Glass-box Test Cases
	Slide 18: Test-Driven Development (TDD)
	Slide 19: Unit Testing
	Slide 20: Regression Testing
	Slide 21: Example Test Driver
	Slide 22: TDD Mantra (Agile Development Process)

